3.5.42 \(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x^2 (d+e x)} \, dx\) [442]

Optimal. Leaf size=137 \[ -\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}-\frac {\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {a} d^{3/2} \sqrt {e}} \]

[Out]

-1/2*(-a*e^2+c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2))/d^(3/2)/a^(1/2)/e^(1/2)-(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/d/x

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {863, 820, 738, 212} \begin {gather*} -\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d x}-\frac {\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {a} d^{3/2} \sqrt {e}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^2*(d + e*x)),x]

[Out]

-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x)) - ((c*d^2 - a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/
(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[a]*d^(3/2)*Sqrt[e])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Dist[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[S
implify[m + 2*p + 3], 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps

\begin {align*} \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx &=\int \frac {a e+c d x}{x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}-\frac {\left (-2 a c d^2 e+a e \left (c d^2+a e^2\right )\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 a d e}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}+\frac {\left (-2 a c d^2 e+a e \left (c d^2+a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{a d e}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d x}-\frac {\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {a} d^{3/2} \sqrt {e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.66, size = 141, normalized size = 1.03 \begin {gather*} \frac {\sqrt {(a e+c d x) (d+e x)} \left (-d+\frac {\left (-c d^2 x+a e^2 x\right ) \tanh ^{-1}\left (\frac {\sqrt {c} \left (-e x+\sqrt {\frac {e}{c d}} \sqrt {a e+c d x} \sqrt {d+e x}\right )}{\sqrt {a} e}\right )}{\sqrt {a} \sqrt {c} \sqrt {\frac {e}{c d}} \sqrt {a e+c d x} \sqrt {d+e x}}\right )}{d^2 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^2*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(-d + ((-(c*d^2*x) + a*e^2*x)*ArcTanh[(Sqrt[c]*(-(e*x) + Sqrt[e/(c*d)]*Sqrt[a*e
 + c*d*x]*Sqrt[d + e*x]))/(Sqrt[a]*e)])/(Sqrt[a]*Sqrt[c]*Sqrt[e/(c*d)]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x])))/(d^2
*x)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(707\) vs. \(2(117)=234\).
time = 0.10, size = 708, normalized size = 5.17

method result size
default \(\frac {e \left (\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (a \,e^{2}-c \,d^{2}\right ) \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {c d e}}\right )}{d^{2}}+\frac {-\frac {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}{a d e x}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 \sqrt {c d e}}-\frac {a d e \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{\sqrt {a d e}}\right )}{2 a d e}+\frac {2 c \left (\frac {\left (2 c d e x +a \,e^{2}+c \,d^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{8 c d e \sqrt {c d e}}\right )}{a}}{d}-\frac {e \left (\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 \sqrt {c d e}}-\frac {a d e \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{\sqrt {a d e}}\right )}{d^{2}}\) \(708\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

e/d^2*((c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^2)*ln((1/2*a*e^2-1/2*c*d^2+c*d*e*(x+d/e))/
(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))+1/d*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^
2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)/a/d/e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1
/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)
^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))+2*c/a*(1/4*(2*
c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*l
n((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))-e/d^2*(
(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*
e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1
/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)/((x*e + d)*x^2), x)

________________________________________________________________________________________

Fricas [A]
time = 2.62, size = 356, normalized size = 2.60 \begin {gather*} \left [-\frac {{\left (4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} a d e + {\left (c d^{2} x - a x e^{2}\right )} \sqrt {a d} e^{\frac {1}{2}} \log \left (\frac {c^{2} d^{4} x^{2} + 8 \, a c d^{3} x e + a^{2} x^{2} e^{4} + 8 \, a^{2} d x e^{3} + 4 \, {\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {a d} e^{\frac {1}{2}} + 2 \, {\left (3 \, a c d^{2} x^{2} + 4 \, a^{2} d^{2}\right )} e^{2}}{x^{2}}\right )\right )} e^{\left (-1\right )}}{4 \, a d^{2} x}, -\frac {{\left (2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} a d e - {\left (c d^{2} x - a x e^{2}\right )} \sqrt {-a d e} \arctan \left (\frac {{\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-a d e}}{2 \, {\left (a c d^{3} x e + a^{2} d x e^{3} + {\left (a c d^{2} x^{2} + a^{2} d^{2}\right )} e^{2}\right )}}\right )\right )} e^{\left (-1\right )}}{2 \, a d^{2} x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*a*d*e + (c*d^2*x - a*x*e^2)*sqrt(a*d)*e^(1/2)*log((c^2*d^
4*x^2 + 8*a*c*d^3*x*e + a^2*x^2*e^4 + 8*a^2*d*x*e^3 + 4*(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 +
 (c*d*x^2 + a*d)*e)*sqrt(a*d)*e^(1/2) + 2*(3*a*c*d^2*x^2 + 4*a^2*d^2)*e^2)/x^2))*e^(-1)/(a*d^2*x), -1/2*(2*sqr
t(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*a*d*e - (c*d^2*x - a*x*e^2)*sqrt(-a*d*e)*arctan(1/2*(c*d^2*x + a*x*e^
2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(-a*d*e)/(a*c*d^3*x*e + a^2*d*x*e^3 + (a*c*d^2*x^
2 + a^2*d^2)*e^2)))*e^(-1)/(a*d^2*x)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{x^{2} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**2/(e*x+d),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x**2*(d + e*x)), x)

________________________________________________________________________________________

Giac [A]
time = 1.15, size = 229, normalized size = 1.67 \begin {gather*} \frac {{\left (c d^{2} - a e^{2}\right )} \arctan \left (-\frac {\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}}{\sqrt {-a d e}}\right )}{\sqrt {-a d e} d} - \frac {{\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} c d^{2} + 2 \, \sqrt {c d} a d e^{\frac {3}{2}} + {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} a e^{2}}{{\left (a d e - {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )}^{2}\right )} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

(c*d^2 - a*e^2)*arctan(-(sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))/sqrt(-a*d*e))/(sqr
t(-a*d*e)*d) - ((sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))*c*d^2 + 2*sqrt(c*d)*a*d*e^
(3/2) + (sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))*a*e^2)/((a*d*e - (sqrt(c*d)*x*e^(1
/2) - sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))^2)*d)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x^2\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^2*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^2*(d + e*x)), x)

________________________________________________________________________________________